Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hoong-Kun Fun, ${ }^{\text {a }}$ Hua-You Hu, ${ }^{\text {b }}$ Jian-Hua Xu, ${ }^{\text {b }}$ Xue-Mei Li ${ }^{c}$ and Shu-Sheng Zhang ${ }^{\text {c }}$
${ }^{\text {ax }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\mathbf{b}}$ Department of Chemistry, Nanjing University, 210093 Nanjing, People's Republic of China, and ${ }^{\text {c College of Chemistry and }}$ Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.034$
$w R$ factor $=0.104$
Data-to-parameter ratio $=9.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

7-Chloromethylbenzo[b]naphtho[1,2-d]pyran-6-one

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{ClO}_{2}$, the pyranone ring adopts a boat conformation. There is one intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction, forming a six-membered ring. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and van der Waals forces.

Comment

Recently, we have carried out photo-induced reactions of coumarins with phenylethenes (Usman et al., 2002). In our continuing studies of these reactions, the title compound, (I), was unexpectedly obtained in the photo-induced reaction of 3,4-dichlorocoumarin with phenylpropadiene in benzene. An X-ray crystallographic analysis was undertaken to find the stereochemistry of (I).

The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). All the $\mathrm{C}-\mathrm{C}$ bond distances in the benzene and naphthalene rings have typical $C s p^{2}-C s p^{2}$ values. The average $\mathrm{C}-\mathrm{C}$ bond distances within these two rings are 1.387 (4) and 1.402 (8) \AA. The dihedral angle between the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 10-\mathrm{C} 15$ benzene rings is $31.50(8)^{\circ}$.

The two benzene rings in the naphthalene moiety make a dihedral angle of $11.06(7)^{\circ}$ with each other. The pyranone ring adopts a boat conformation, with atoms O 1 and C 7 deviating by 0.122 (5) and 0.157 (6) \AA, respectively, from the mean plane through the other four atoms. The C1-C6 benzene ring makes a dihedral angle of 26.34 (7) ${ }^{\circ}$ with the naphthalene

Figure 1
View of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme.

Received 23 September 2003
Accepted 2 October 2003
Online 7 October 2003
mean plane. Atom C18 of the chloromethyl group, attached to the naphthalene ring moiety at C 17 , is almost coplanar with the $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 10 / \mathrm{C} 15-\mathrm{C} 17$ benzene ring, deviating from it by 0.191 (3) A․

In the title structure, there is one intramolecular $\mathrm{C} 18-$ $\mathrm{H} 18 B \cdots \mathrm{O} 2$ hydrogen-bond interaction (Fig. 1), forming a closed six-membered ring $\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 17-\mathrm{C} 18-\mathrm{H} 18 B$.

In the crystal structure, the molecules are linked, by a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 2), into the chains which are stacked parallel to the b axis (Fig. 2). The packing is stabilized by this interaction and by van der Waals forces.

Experimental

The title compound was prepared by the photolysis of a benzene solution of 3,4 -dichlorocoumarin in the presence of an excess of phenylpropadiene, followed by chromatographic separation of the reaction mixture on a silica-gel column with petroleum ether-ethyl acetate (b.p. 333-363 K) as eluants. A single crystal suitable for X-ray crystallographic analysis was prepared by slow evaporation of a di-chloromethane-acetone solution.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{ClO}_{2}$
$M_{r}=294.72$
Monoclinic, $P 2_{1} / c$
$a=9.9771$ (5) A
$b=16.1368$ (8) \AA
$c=8.2899$ (4) \AA
$\beta=98.129(1)^{\circ}$
$V=1321.3(1) \AA^{3}$
$Z=4$
$D_{x}=1.482 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5237 reflections
$\theta=2.4-28.3^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.50 \times 0.44 \times 0.42 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.869, T_{\text {max }}=0.888$
6465 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.104$
$S=1.05$
2312 reflections
234 parameters
All H -atom parameters refined
Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C9	$1.358(2)$	C8-C9	$1.477(2)$
O1-C1	$1.376(2)$	C17-C18	$1.501(2)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.467(2)$		
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$125.46(15)$	$\mathrm{C} 17-\mathrm{C} 8-\mathrm{C} 9$	$119.43(14)$
$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 6$	$122.84(14)$	$\mathrm{C} 8-\mathrm{C} 17-\mathrm{C} 18$	$124.62(15)$

Figure 2
Packing diagram of (I), viewed down the c axis, showing extended chains in the \mathbf{b} direction. Dashed lines denote $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions.

Table 2
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}$	$0.95(2)$	$2.54(2)$	$3.371(2)$	$147(2)$
$\mathrm{C} 18-\mathrm{H} 18 B \cdots \mathrm{O} 2$	$1.00(2)$	$2.17(2)$	$2.768(3)$	$117(2)$

Symmetry code: (i) $2-x, y-\frac{1}{2}, \frac{3}{2}-z$.
All H atoms were located in difference Fourier maps and were refined isotropically. Owing to a large fraction of weak data at higher angles, the 2θ maximum was limited to 50°.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/ PFIZIK/610961.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhao, B. G. \& Xu, J. H. (2002). Acta Cryst. C58, o57-o58.

