organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hoong-Kun Fun,^a* Hua-You Hu,^b Jian-Hua Xu,^b Xue-Mei Li^c and Shu-Sheng Zhang^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Nanjing University, 210093 Nanjing, People's Republic of China, and ^cCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.034 wR factor = 0.104 Data-to-parameter ratio = 9.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

7-Chloromethylbenzo[*b*]naphtho[1,2-*d*]pyran-6-one

In the title compound, $C_{18}H_{11}ClO_2$, the pyranone ring adopts a boat conformation. There is one intramolecular $C-H\cdots O$ interaction, forming a six-membered ring. The crystal structure is stabilized by intermolecular $C-H\cdots O$ interactions and van der Waals forces.

Comment

Recently, we have carried out photo-induced reactions of coumarins with phenylethenes (Usman *et al.*, 2002). In our continuing studies of these reactions, the title compound, (I), was unexpectedly obtained in the photo-induced reaction of 3,4-dichlorocoumarin with phenylpropadiene in benzene. An X-ray crystallographic analysis was undertaken to find the stereochemistry of (I).

The bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987). All the C–C bond distances in the benzene and naphthalene rings have typical Csp^2-Csp^2 values. The average C–C bond distances within these two rings are 1.387 (4) and 1.402 (8) Å. The dihedral angle between the C1–C6 and C10–C15 benzene rings is 31.50 (8)°.

The two benzene rings in the naphthalene moiety make a dihedral angle of $11.06 (7)^{\circ}$ with each other. The pyranone ring adopts a boat conformation, with atoms O1 and C7 deviating by 0.122 (5) and 0.157 (6) Å, respectively, from the mean plane through the other four atoms. The C1–C6 benzene ring makes a dihedral angle of 26.34 (7)° with the naphthalene

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Figure 1 View of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Received 23 September 2003 Accepted 2 October 2003 Online 7 October 2003 mean plane. Atom C18 of the chloromethyl group, attached to the naphthalene ring moiety at C17, is almost coplanar with the C7/C8/C10/C15–C17 benzene ring, deviating from it by 0.191 (3) Å.

In the title structure, there is one intramolecular C18– $H18B\cdots O2$ hydrogen-bond interaction (Fig. 1), forming a closed six-membered ring O2-C9-C8-C17-C18-H18B.

In the crystal structure, the molecules are linked, by a weak intermolecular $C-H\cdots O$ interaction (Table 2), into the chains which are stacked parallel to the *b* axis (Fig. 2). The packing is stabilized by this interaction and by van der Waals forces.

Experimental

The title compound was prepared by the photolysis of a benzene solution of 3,4-dichlorocoumarin in the presence of an excess of phenylpropadiene, followed by chromatographic separation of the reaction mixture on a silica-gel column with petroleum ether–ethyl acetate (b.p. 333–363 K) as eluants. A single crystal suitable for X-ray crystallographic analysis was prepared by slow evaporation of a dichloromethane–acetone solution.

Crystal data

-	
$C_{18}H_{11}ClO_2$ $M_r = 294.72$ Monoclinic, $P2_1/c$ a = 9.9771 (5) Å b = 16.1368 (8) Å c = 8.2899 (4) Å $\beta = 98.129$ (1)° V = 1321.3 (1) Å ³ Z = 4	$D_x = 1.482 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 5237 reflections $\theta = 2.4-28.3^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless $0.50 \times 0.44 \times 0.42 \text{ mm}$
Data collection	
Siemens SMART CCD area- detector diffractometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.869, T_{\max} = 0.888$ 6465 measured reflections	2312 independent reflections 2111 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 25.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -19 \rightarrow 16$ $l = -9 \rightarrow 9$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.104$ S = 1.05 2312 reflections 234 parameters	$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0586P)^2 \\ &+ 0.4109P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.29 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.29 \text{ e } \text{ Å}^{-3} \end{split}$

Table 1

Selected geometric parameters (Å, °).

All H-atom parameters refined

O1-C9	1.358 (2)	C8-C9	1.477 (2)
O1-C1	1.376 (2)	C17-C18	1.501 (2)
C6-C7	1.467 (2)		
C5-C6-C7	125.46 (15)	C17-C8-C9	119.43 (14)
C10-C7-C6	122.84 (14)	C8-C17-C18	124.62 (15)

Figure 2

Packing diagram of (I), viewed down the *c* axis, showing extended chains in the **b** direction. Dashed lines denote $C-H\cdots O$ intermolecular interactions.

Table 2

C–H···O interactions (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$

 C11-H11 \cdots O2ⁱ
 0.95 (2)
 2.54 (2)
 3.371 (2)
 147 (2)

 C18-H18B \cdots O2
 1.00 (2)
 2.17 (2)
 2.768 (3)
 117 (2)

Symmetry code: (i) 2 - x, $y - \frac{1}{2}, \frac{3}{2} - z$.

All H atoms were located in difference Fourier maps and were refined isotropically. Owing to a large fraction of weak data at higher angles, the 2θ maximum was limited to 50°.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 305/ PFIZIK/610961.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhao, B. G. & Xu, J. H. (2002). Acta Cryst. C58, 057–058.